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ABSTRACT

A new series expansion method is developed for a class of nonlinear

singularly perturbed optimal regulator problems . The resulting feedback

control is near-optimal and can stabilize essentially nonlinear systems

when linearized models provide no stability information. The stability

domain is shown to include large initial conditions of the fast variables .

The control law is implemented in two-time-scales , with the feedback from the

fast state variables depending on slow state variables as parameters . The

coefficients of the formal expansions of the optima l value function are

obtained from equations involving only the slow variables.

This work was supported in part by the National Science Foundation
under Grant ENG 74-20091, in part by the Energy Research and Development
Administration, Electric Energy Systems Division , under Contract U. S. ERDA
EX-76-C-0l-2088, in part by the U.S. Air Force under Grant AFOSR 73—2570 ,
and in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy ,
and U.S. Air Force) under Contract DAAB—07—72—C—0259.

. 1  - . .  —



1

I. In t roduct ion

Compared with the rich literature on linear regulator theory ,

publications dealing with feedback design of nonlinear systems are a small

minority . Realistic approaches to the difficult nonlinear feedback control

problem usually exploit properties of special classes of systems to develop

approximate methods [1 ,2]. The approach in this paper exploits multiple

time scale properties of a class of nonlinear singularly perturbed sys tems [3 ,41 to

achieve s tab i l iza t ion  and nea r-op t imal i t y .  The s tabi l iza t ion resu l t s  obtained are

essentially nonlinear in the sense that they also apply to the critical case

when linearized models provide no stability information . Due to a separation

of time scales, the proposed design procedure is applicable to higher order

systems .

The problem considered is to optimally control the nonlinear system

= a~,(x ) + A1(x)z ÷ B1(x)u , x(O) = x (la)

~.LZ a
2

(x) + A2(x)z + B2(x)u , z(O) z (lb )

with respect to the performance index

J J~~[ p (x) +s~ (x)z+z
lQ(x)z+u~R(x)u]dt (2)

where P~ 
> 0 is the small singular perturbation parameter , x, z are n-,m-

dimensional states , respective ly, u is an r-dimensional control and the

prime denotes a transpose. It is assumed that there exists a domain

DC R~ containing the origin such that for all x€D and Z€R
m 

the problem

satisfies the following assumptions :

- - - -~~~~~~~~~~ - a - - - . - - - - - - - - -
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I. The functions a1, a2, A1, A2, B1, B2, p, s, q and R are differentiable

with respect to x a sufficient number of times and a1, a2, p and s are

all zero only at x 0 .

~I. The matrices Q(x) and R(x) are positive definite , that is , Q(x)>O ,

R(x)~~0. Furthermore , the scalar function p+s ’z+z ’Qz of x and z is

positive definite in both x and z.

[II. For every fixed xcD

rank[B2, A2B2,.. .,A~~
1
B
21 m (3)

and hence A2(x) is assumed 
to be nonsingular. (If not, then using

u = U + K(x)z such that A2 + B2K is nonsingular we redefine the problem.)

Assumptions I and II establish that the origin is the desired equili-

brium of (1). Assumption III and Q (x)>0 simplify the derivations .

Alternatively a less restrictive stabilizability-detectability condition

can be used .

Finite time trajectory optimization problems for the same class

of systems have been treated in [3,4] via singularly perturbed two point

boundary value problems originating from necessary optimality conditions .

The resulting controls are open-loop and require boundary layer correction

terms at both ends of the interval. For the infinite time regulator

problem considered here the Hamilton-Jacobi-Bellman sufficiency condition

is more suitable since it readily incorporates stability requirements and

leads to feedback solutions . Using this condition we obtain near-optimal

stabilizing controls in feedback form and avoid explicit treatment of

boundary layer phenomena.
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Our proced ure is based on a nes ted power series  expansion of the

optimal value function in z and A . An advantage of this procedure is that

it uses lower order equations involving only the slow variable x. In appli-

cations truncated series are of interest. Stabilizing properties of various

truncated designs are discussed and an explicit estimate of the stability

domain is given. It is of practical importance that this domain encom7asses

large initia l disturbances of z(O). Furthermore , near-optimality of these

truncated designs is established in terms of 04.~), Q (
~2), etc. A particularl y

useful result is that an O(~ ) near-optimal feedback contro l can be implemented

without knowing the value of the small parameter ~
.

The paper is organized as follows . In Section II a reduced order

problem is formulated for the slow variable x. The crucial assumption is

that the properties of its solution are known . Using a truncated expansion

of the optima l value function the so called composite control is introduced

in Section III. Since the leading term in the series is the optimal value

function of the reduced problem , the original problem is well posed . In

Section IV it is shown that the composite control guarantees a finite domain

of stability for th e resulting feedback system. ifl Section V , a form a l

expansion of the optima l value function is proposed and near-optimality results

are discussed . An examp le is discussed in Section VI.

II. The Reduced Control

In singular perturbation techniques [5 ] , a problem for the full

order system (1) where ~i > 0 is interpreted as a perturbation of a

reduced problem

g = a1
(x) + A 1 (x)z + B1 (x)u , x(0) x0 (~a)

0 = a
2

(x ) + A2(x)z + B2 (x)u (.~+b)

a - . - - ‘ -  -~~~~~
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in which iA = 0. Due to Assumpt ion  I II , 2 can be solved from (4b) and eliminated

from (4a) and (2). Then the reduced problem is to o p t im a l ly contro l the system

= a (x) + B (x)u , x(O) x (5)

with respect to

J = j ~~[p (x ) + 2s ’ (x)u + u ’R (x )u] dt  (6)

where

— l
a0 a1 

- A1A2 
a

2

B AB 1 1A2 2

— l , ‘— 1  — l
p p - s A

2
a2 + a

2A
2 

QA2 a2

s B A ~~
1 (QA

2
1’a
2 

- s)

R = R + B~A~~~
1QA;

1
B2 

. (7)

The ori g in x = O  is the desired equ i l ib r ium of the op t ima l ly cont ro l led  reduced

system (5) for  all x€ D , since , in view of Assumpt ion II , a0 (O) 0 and

p ( x ) + 2 s~~( x ) u + u ’R0 (x)u  (8)

is pos i t ive  de f in i t e  in x and u .

The reduced problem (5), (6) is considerably simpler than the

original problem (1), (2) because of the elimination of the fast variables

and the reduction of the system order. One of the tasks of the singular

perturbation analysis is to establish whether the full problem is well

posed in the sense that its solution tends to the solution of the

reduced problem as h~ 
‘
~~ 0. If so, then the next task is to deduce the

properties of the original problem from the properties of the reduced problem.

— 

. 5  — . - — - —-- . -  - -
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Finally these properties are to serve as a basis for a simplified design

procedure.

To formulate our basic assumption about the properties of the

solution of the reduced problem we use the optimality principle

0 = m i n E p  (x) + 2s ’ (x)u + u ’R0(x)u + Lx(ao(x) + B0(x)u)] (9)

where L is the optimal value function and L is its partial derivative with

respect to x. This yields the minimizing control

u = -R 1(s + ~
- B ’L ’ ) (10)

0 o o 2 o x

whose elimination from (9) results in the Hamilton-Jacobi equation

o = (p - S ’R
1

S ) + L (a - B R
1s ) - 

~~
- L B R 1B ’L ’ , L(0) = 0.

0 0 0  0 X 0 0 0  0 4 X O O  O x

(11)

Nota that ,due to (8) , p - s ’R
1
s is pos i t ive  de f in i t e  in D. Our

crucia l assumption is then stated as follows.

IV .  The uni que pos i t ive  de f in i t e  so lu t ion  L(x)  of (11) exis ts  in D and is

d i f f e r e n t i a b l e  wi th  respect to x a s u f f i c i e n t  number of t imes.

Furthermore the level sur face  L c  = constant  is taken to be the

boundary of the set D.

In the special case considered in ~l1 , where the linearization of (5) at x = O

is stabilizable and its states are observable in the quadratic approximation

of J , our Assumption IV is automatically satisfied for all x near the origin.

It  fo l low s from Assumption IV that  u is the uni que optimal feedback control

for the reduced problem and L is a Lyapunov function of the optimally

controlled reduced system

I - - ~~ — - -— - - - - . - -- -—— —— — -
~~~~~
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= a - B R 0
1
(s0~~~ B~L

’) = ~0(x) (12)

e s t ab l i s h i n g  tha t  the or ig in is a s y m p t o t i c a l ly s table  and the set D be longs

to i ts  domain of a t t r a c t i o n .

]~~~~
j .  The Composi te  Cont ro l

The optimal value function V(x,z,I.L) of the full problem (1),

(2) satisfies the equation

0 = mini p + s ’ z + z ’Qz + u’Ru + V
~

(a
1 + A1z + B1u) +

I V ( a
2 

+ A
2

z + B
2
u)] (13)

where V , V denote the partial derivatives of V with respect to thex z
variables x, z, respectively. The minimizing control of (13) is

u = - ~ R
1(B ’ V ’ + ~ B ’ V ’) ( 14)

2 l x  ~L 2 z

and its subst i tut ion into (13) yields the Hamilton-Jacobi equation

o = p + s ’z ÷ z ’ Qz + V ( a 1 + A1
z) + ~ V(a~ + A

2
z)

- ~(VB 1 + ~ 
V B 2

)R 1
(B~V + ~ B~V ’) , V(O ,O,~~) 0 . (15)

Since sys tem (1) is l inear  in z and J in (2)  is quadra t ic  in z ,

and since z is m u l t i plied by ~~~, we seek a solution of (15) in the form

V(x,z,~.) = V0 (x) +~AVj (x )z  +i~z ’V 2 (x)z  +~.q(x , z ,I-)

V(x ,z,~ )+kq(x ,z,~ ) , V0 (O) 0 (16)

where

= 0( 1) ,  ~q/ ~~z 0 ( p ) .  (17)

____________ S - - - - . - 

— — —

~~~

— -

~~~
~-
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We shall investigate titc expansion of q in a later section. The partial

derivatives of V with respect to x ,z are

V +O (~ )
~: 0~ 

2 ~1~~)
\T ~~~~ +2_ z ’V,,+O (L~ ).
z 1 —

Substituting (18) into (15) and neg lecting the ~ dependent terms , we obtain

the equation

O = p +V0 a 1 +V 1a7 
-~~~ (V0 B1

+ V B
2

)R ’(B~ V~~~+ B~ V~)

+ ~s
’ +2a~~~, +V 0 (A 1

-B
1 R 

1B~ V2 ) ~~~ 
~~~~~~~ 

l~~~2 )~~z

+ z ’ ( Q + V 2,\ f A~~~~-V~ B 7 R
1I~~V2~~~. ( U i )

In o rder  t o  Sa t  ~~~ (i~~~ ic.~~tit.La l v ~~~~ all ~ /1  c e q u i r e  tha t

O p + V 0 a 1 ~V~a9 
- .  

~ (V 0 D~ + V ~ ]l
2 )R 1 (B~ V~ ~~~~~~~ V

0
(0) = 0  (20)

0 S ’ +2a~~ + V  (A
1 -B 3 R 1

fi~~~2 ) + V ; (A 9 -B ,R~~~~~V2 ) ( 2 1 )

0 = Q + V ~A~ + A ~ \ 2
-V 2 i~2 R

1B V 2 . ( 2 2 )

At each fixed value of :-: , ( 2 2 )  is an al gebraic Riccati equation for V2 . ‘~

v iew of (3) and (J:,)>O , the unique positive definite solution V
2 

exists such

that for all xcD , the rea l parts of the ei genva l ties ~ A2 A2
-B
2R

1
B~V2,

denoted by Re [k(A2)t, arc less than a negative constant . Thus A
2 

is non-

singular and V1 can oe expressed in terms of V
0 

and V~ as

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (23)

I t  is of c r u c i a l  imp - ‘rcauce that the ~ I inlinil ion of V
1 f rom (21) results in

an e q u a t io n  i nvo I log - Ill’; V0 . For t he we I p sednes s  of  t i l e  f L i l  1 p r o h l c ”

•
1 . - - - 



8

it is necessary that the leading term V0 of (16) be identical to the solution

L of the reduced problem.

Lemma 1

If Assumptions III and IV are satisfied , then the unique positive

definite solution V0(x) of (20)-(22) exists in D and is identica l to the

solution L(x) of the reduced problem (5),(6).

Proof: It is shown in the Append ix that eliminating V1 from (20), we obtain

the Hamilton-Jacobi equation (11) with V0x in place of L , and hence

V0 (x) L(x) with properties as in Assumption IV .

By virtue of Lemma 1, V0 and are solved independent ly from (11)

and (22). This is the separation of time scales in the design of nonlinear

regulators , analogous to the linear time-invariant design in [7)

Using V, we derive the control

F = - 
~

- R
1 (B~V~ +~~

. B~V~)

= - 
~~R

’[B~V~~~+B~ (V1 +2V2z)]+0O.L) (24)

u + O (p )

whose main part u~ is defined as the composite control. Eliminating V1 from

(24) using (23) and following the derivation in [7], u
~ 

can be written as

u = -R 1
(s+~- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
B ’V~~))]

= U -R 1
B~V2(z+X 2~~ 2) (25)

where
= A2-B2R

1
B~V2 (26a)

a2 (x) = a
2 

-
~~~~ B

2
R

1 (B~V1~, +B~V1) a2 ( (26b)

a . .  - -~
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Hence the composite contro l u
c 

consists of a slow control u which optimizes

the reduced system (5) and a fast control -R
1
B~ V2(z+A~~~2

) which optimizes

the fast part (z+A 
L
) of z in the Sense that V2 satisfies (22). Note that

when z is not penalized in (2), that is when Q(x) = 0, but Re{?.(A
2)~ ~ 

0, the n

V2 is identicall y zero and u
c 

reduces to u
0 of (10). Stabilizing properties

of the composite control U are established in the next section.

IV. Stabilizing Properties

System (1) controlled by U is

= a
1 +A 1z+B1

u a 
~1(x)+~~1

(x)z, x(O)=x 
(27)

= a2 +A 2 z + B 2
u a ~2(x)+~ 2(x)z , z(O) z

wh ere

a1 
= a1~~~ BiR

’(
~~~~~~

+B
~
Vi), ~i

(0) 0 
(28)

K1 = A1
-B

1R
1
B,V2

.

With the change of variables

= 
~~~~~~~~~~~~~ 

(29)

exhib it ing fl as the fast part of z, system (27) becomes

= 
~~~~~~~~~~ 

, x(0) x (30a)

pT = p (
~~~

a2 ) a O ~~~~

~f(x)+[A2(x)+pF(x)l1) , ~ (0) 
= z

0+A2
1
(x0)~ 2(x). (30b)

Since the right-hand side of (30b) is an 0~~~) pe r t u rba t i on  of X~ (x)T and

RefX (K2)}<0 in D we expect that T will rap idly decay to an 0(p) quantity.

This motivates the introduction of 

—.— _ _ _ _ _ _ _ _ _  — .
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U(x,T,~~) = V0(x)+~~
T’V

2(xY (31)

as a t en ta t ive  Lyapunov f u n c t i o n  for  (30). Here e is a small posi tive scalar

to be determined . From Assumptions III and IV , V0(x) 
is positive definite

and V2(x)>O in D. Hence U is positive definite for all xeD and T€R
m
.

Furthermore , since V0 (x) c0 > O  for  a l l  x on the boundary of D, the surface

S(x,
T
,~~) = [x ,~ :U (x ,T,e ) c )  (32)

is closed in the (n-fm)-dimensiona l domain xeD , T€ R m . We de f ine  5in to be

the domain  in the in t e r io r  of S.

Let D
1 

be a set strictl y in the interior of D, that is , the boundary

of D
1 
does not intersect the boundary of D, and let E be a bounded set in R

m
.

The presence of ~ in U extends S to encompass (x ,T) for all xeD1 
and for “ in

any prescribed set E. This cruc ial result is stated as follows .

Lemma 2

If Assumptions III and IV are satisfied , then there exists an P > 0

such that the domain S. contains all xeD , TeE.in 1

Proof: At each point x€D1, the projection S onto the 1~ subspace is the

ell ipsoid

= (c -V0(x))IC (33)

implying that extends to O(lIv’I). Hence for every ~~, there exists an e6c)

s u f f i c i e n t ly smal l  such that  the e l l ipsoid (33) includes all T€E. (Note that

we must exclude the boundary of D because from (33) the projection of S at

any point on the boundary of D is a sing le pc’iot T1 0.) Hence choosing P~ to

be the smallest of such €~-(~~), the domain S~ contains all xcD1, “CE for any



ii

By virtue of Lemma 2, the initial condition T(0) of (30b), and

hence z(O) of (27), can be as far away from zero as O(1/v’~ ) and still be

enclosed  b y S. We now examine the rela t ionship betwaen ~ and p .

Using (ll),(22) and rearranging , we obtain the time derivative of

U with respect to (30) as

U = -g(x ,~~,~~) -f  ~~Q(x)~ -
~~~~ T

’M(x,~~,g ,py (34)

where
— k i ,--g g1 2~~~

’”
~ 

‘

— l 1 — —l ~ —‘
g p - s R s + V  B R  B V1 0 0 0 0 4 O x o o  o O x

y = A
~
V
~X 

+2CV
2
f (35)

= I’ _
~~~

- Q
1
y

M =

Since V2F + F’V
2 
and are bounded for all x ,~ in 

~~~ 
and since Q(x)>O

in D, it follow s that there exists a ~~‘> fl such that M>O for all x ,~ in S .I in

and for pe (O,~~’T . Thus the last two terms in U are positive definite . To

ensure that g(x ,?.,Li- ) is positive definite , we assume that the reduced problem

a l so  s a t i s f i e s

V. The limit

lim = k(~ )<~ (36)
IxHo g

1

exists for all fixed ~~>O .

Note that k>O because y ’Q
1
y is positive semidefinite and g

1 
is positive

definite . The limit (36) imp lies that there exists a domain b about x 0

such tha t

y ’Q
1
y i~ (1+k)g 1 (37)
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that is such that for ~~<2€~/(l+k), g is positive definite in 15, see (35).

Let k(€~)>0 be the minimum value of g1 
on the boundary of ~~~. Hence in the

domain

= [x :g1(x) ’l~ (38)

g is positive definite . On the other hand , since D is bounded , there exists

a k1 (P)>O such that v ’Q ’y<’k1 
for all x€D , that is such that g is positive

definite when x is not in the domain

i~(x) = [x : g1
(x)~~~ k1/2~~ (39)

about the orig in. But for ~~~ 2Pk/k1, DC~~~, imp lying that g is posi tive

definite in D. Thus ~ is negative definite for all x ,’fl contained in S.in

We now conclude that U is a Lyapunov function for (30) guaranteeing that

x 0 , =0 is asymptoticall y stable for all X C D 1,  
‘CE and for i~C(O ,~~ ], where

2~ 2~ k= m1n(j—~~~~~~~~~~j). (40)

Returning from the variable to the z variable via

we obtain for all x€D 1, TeE a corresponding bounded domain E1 for z. We

summarize the above discussions on the asymptotic stabilizing property of

u in (24) as follows .

Theorem 1

If Assumptions I-V are satisfied , then there exists a ~~~>0 such

that for all pe (O ,~ *~ and for all xCD 1 
and z in any prescr ibed bounded set

E1, the origin x 0 , z O  of the feedback system (1) controlled by the

composite control U is asymptotically stable.

Theorem 1 can be applied in two different directions . As outline d

above , for any given D
1 
and E1, we first find ~~ such that S

in of (32)

. . - —.~-
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con ta ins  a l l  xeD 1, z€ E 1. Then we find ~~~ from (40). This direction is

suitable when p is a parameter at the designe r ’s d isposal , such as a ga in

factor [911 . In the other direction , if L~ represen ts some given ph ys ical

parameters , such as time constants , we use its value to determine the

smallest g such that U of (34) is negative definite , that is we find the

large st D
1 

and E
1
.

As a special case of Assumption V , consider that the origin x 0

of the reduced system (12) is exponentiall y stable. Then near the origin ,

p _ s t R
l
s , V0 grow as x1

2, and V0~ 
, a l  grow as lx i , and we can f ind

positive constants k2,...,k9 
and 5 such that

k 1x 1 2 < p -s ’R
1s < k 1x 1 2

2 — 0  0 0  0 — 3

k
4Ix~

2 < V 0 < k51x 1 2
(41)

k
6ix ! ‘

. V0~
i k~,l x I

k
8ix ! ~~. ij < k

9l x i

for all lx i  <-5 . It follows from (41) that there exists a fixed k10(C)>O

such tha t

y ’Q
1y < k 10 1 x 1

2 (42)

and the limit (36) is bounded by
~~~l k lx ! 2 

k
lim “ ~ ~ lim 

10 = 10 (43)
i x !~ o g1 Ix I~ O k2lx ! 2 k

2

sa t isf ying Assumption V.

In th is case a claim stronger than Theorem 1 can be made .

; ‘

~~~~ 

. 

- . T  ~~~~~~~~~~~~~~~~~~ 
- -
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Corol lary  1

If Assumptions I-IV are satisfied and the origi n x 0  of the

reduced sys tem is exponentially stable , then the conclusion of Theorem 1 holds

and moreover the origin x 0 , z 0  of (27) is exponentially stable .

Proof: The first part of the corollary follows from Theorem 1. The second

part follows from the linearization of (27) at the origin

aa1
(O) 

— 
-

ox A 1(O) Sx

= 

~
_
(o) 

— 

. (44)
Sz 

~~ ~~~~~~ [Oz ~

The system matrix of (44) has one group of n small eigenvalues 0(n) close

to those of ~~~ -A 1A2 
~~~ x O  

and ano ther group of m large eigenvalues 0(1)

close to those of — K (0) [8] . But K -A A K = K and ...._2~ =
— — p

~ 
2 1 1 2 2  0

~~LKK l 

~~~ 
as a

2(O) 
= 0. Thus the real parts of the eigenval ues of

the system matrix of (44) are all negative and x 0 , z 0  is exponen tially

s table .

If the or igin x 0  of the red uced sys tem is onl y asymp totical ly

stable but no t ex ponen tia l l y stable , then in general g need not be posi tive

definite for all xeD. This situation includes the critical case when the

l inear ized model does not pr ovide any stabi l ity information as c lar i f ied  by

the examp le in Section VI. For this situation the system is now shown to

possess a weaker stab i lity proper ty,  that is , its trajectories tend to a

small sphere around the ori gin .  Def ine  the domain  in Rn

P ( x )  = : g (x,E~,P.) < 0~ (45)

which is contained in the domain ~ of (39). Due to the presence of - in

_ 
I - - - . -  - -- - - - - - - --~~ -
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(34), U may be positive only if xcP (x) and P 0(p). Otherwise , U is

negative . Defining the surface

n(x ,z) = tx ,z :xep(x ;p), z - ( x )~ 2
(x)~ (46)

rn-i-n . . . . . -about the origin in R , u~ def ined  by (24) is a stabilizing control in the

following sense.

Theorem 2

If Assumptions I-IV are satisfied , then there exis ts a p*> O  such

that for all pc (O ,~ *~~, the feedback control (24) steers all xcD1, z€E 1 of the

full system 0(p) close to the surface TT(x,z ) .

Proof: Since U>0 and U<0 except for x€p(x) and T’ O(p), x converges to

P(x) and T decays to an 0(p) quantity . Thus in the x ,z variabLes,(x ,z)converges

to an 0~~) neighborhood of the surface TT (x,z).

In the case where the fast transients of z in (1) are exponentially

stable , that is , A2(x) 
is stable for all XCD, and we are onl y concerned with

the optimality of the reduced system (5), then the z-independent reduced

control u of (10) stabilizes the full system (1) with essentially the same

stabilizing properties as u of (24). We shall not repeat the argument .

An attractive feature of the controls u and u is that they do
C 0

not require the knowledge of the actual value of p provided that it is

sufficient ly small. When appropriately imple mented , these controls stabilize

the full system (1) and achieve optimality of the reduced sys tem , and in the

case of u , also optimality of the fast part of z. The above results also

answer the question of well posedness by giving the conditions under which

the same optimal reduced order system is obtained when p is set equal to

zero either when system (1) is uncontrolled or when it is controlled by

- - - -~~
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u
c 

or u .  In contrast to many other singular perturbation results which

requ ire ‘
~~ to be sufficientl y smal l , this section provides a method to

compute an estimate of allowable values of p given a stability doma in or

v ice versa .

V. A Formal Expans ion and Near-Optimality

The expansion (16) only satisfies the Hamilton-Jacobi equation (15)

to 0(p) order . We now propose to solve (15) by expanding V formally as a

nested infinite power series. If this power series is convergent , then

the optima l solution V of (15) exists. For x ,z near the or igin , it has been

shown in [1] that the optimal solution exists and possesses a power series

expansion when system (1) after linearization at the origin is stabilizable

and the state in the quadratic approximation of J is observable. Here we

are interested in a power series of V which satisfies (15) to any order of ~~~ .

Since system (1) is linear in z and J is quadratic in z, the

op t imal val ue func tion can be expanded as a powe r ser ies in the componen ts

of z [21 . In addition , since z is the fas t var iable , the z terms in the

optimal value function are multi plied by appropr iate powers of p [5] . In

view of these two charac teris tics , we seek a solution of (15) in the form

V(x ,z,~~) = ~~~~~~~~~~~~~~~~~~~~~~~ +p~~ 1 ~~~~~~~~~~~~~~~~

i -p
2 
E E E v . (x ,p)z.z z ~~~~j l  k l  q=l 2jkq j k q

m m
i -p  E Z -“  E V. - . (x ,p.)z z ...z . +~~~~~~

-

1 1
=1 j

2
l ]j=l ij1j2. 1 2 ~i

(47)

- - -- I - - -- - -  -
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where V.. - - is the (j1,j2,.. .,j.) element of the completely symmetrict3 J . . . J
generalized matrix V~ of dimension m and z~ is the jth component of z.

The summation signs in (47) and in other equations in the paper will be

omitted when there is no confusion as to which indices j1,j2,. ..,j.

are being summed . The partia l derivatives V ,V ,. . . ,V expressed in terms
X Z

1 
Z
m

of the vector x and the scalars  z 1, .  . ., z~ are

V = V + ~-V . z. ÷ p.V . z.z + . .. (48a)x Ox 1jxj 23k xj k

V~ 
= pV

1~ 
+ 21.LV2..z. + 3lL

2
V
3~~.k

z.z
k 
+ ..., i l ,2 , ... ,m (48b)

where the scunmation signs over j,lc are omitted .

For the series (47) to satisfy (15) as an identity, we f irs t

rewrite (15) in terms of the vector x and the scalars

0 = p +s z .  + Q..z.z. + V (a1 +A 1~z~) + V (az. +A2..z.)

- 

~ 
(V
XB~ 

+ ~ V~~B2j)R ’(B~V~ + ~ B~~ V~~) (49)

where s~ , a2~ are the ith components of the vectors s, a2, respectively,

is the ith column of the matrix A1, B2~ 
is the ith row of B2, Q2..,

A21~ are the (i,j) elements of Q, A2, respectively ,  and the summation Signs

over the indices i,j are omitted . Then, upon substituting (48) into (49)

and equating the coefficients of the like powers of z~ , we obtain

t
The (j1,j2,. ..,jj) elements of V~ are identical for all permuta-

tions of the indices j1,j2,...,j~ [6].

-~ _
~~a - — -
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0 = p + v ~~ a 1 + V  .a . (V B -I- V .B
li 2i 4 C~ 1 Li. 2i

(50a)

1
O = s. i-V A +i~L V . a -i-V .A - + 2 V  a - — (V B2 O x ii ç~x li lix 1 lj 2ji 2ij 2j

+V .B )R ’(ILB ’V ’ . +2B~~.V2 ..) , i l ,2,...,m (Sob)
lj j 1 lix

o = Q +u.V - - a +j~L (V . A - )  +2(V - A k~~ 
i-~~~ v aij 2ijx I lix 13 s 2ik 2 j s 3ijk 2k

I -

2 
(V B +V lk B2k )R 1

(~LB ’V ’ . +3pB ’ V ..)
x 1 1 2ijx 2k 3kij

I
~~ 

(pV - B +2V2jkB2k )R ’O.LBjVjjx +2B
~k

V
2kj) ‘lix 1

i , j  = l ,2,...,m (50c)

o = ~~~ .. a +i~ (V .. A1~ )5 +4~
2
V
4~]~ 

a +3p (V - . A k~sq 2q ,3ijq 2q3ijkx 1 2ijx

-
~~~~ (V~~B1 +V 1q B2q )R 1

(~
2
B ’V ’ .. +4p2B ’ V1 3ijkx 2q 4ijkq’

-
~~~~ 

(p.v1. B +2V B )R
1
(IJ.B~V

’ . +31.LB ’ V
ix 1 2iq 2q 2jkx 2q 3qjk~~s ’

i , j , k 1 ,2,...,m (SO d)t

where the right hand sides of (5Oa),~~Ob),(5Oc),(5Od),..., are the

coefficients of the z-independent terms and of the z , z z., z.z z ,. • . ,i i j  i j k

terms , respectively. Because of symmetry , there are m(m+l)/2 equations
i- 1

in (50c), m(m+l ) (m+2)/6 equat ions in (50d) and in general , (
k

TT
O

(m+k)) /f l

equations when the coefficients of z.  z .  . . . z
3 

,
~l ~2 i

are equated .

The subscri pt s denotes the symmetrization operation of generalized
matrices [6] . For example ,

(V2ikA2kj) ~~ 
(V2ikA2k. i - V

2 
ikA2ki)

(V
3ijqA2qk)s

=
~~
(V
3ijqA2qk+V - -  A +V - A .+V - A +V A i-V A ).3jiq 2qk 3ikq 2qj 3kiq 2qj 3jkq 2qi 3kjq 2qi
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For a simplified treatment of these equations we now exp loit the

presence of the small singular perturbation parameter p . We expand each

coefficient of (47) as a power series i-n ~

V .(x,p) = E pJ V~ (~) , i 0 ,l,2,... (51)
i j=O i

where the boundary condi tion of V~ is V~(O )r0 , j 0 ,l,2,... The

expressions (51) substituted into equations (50) are to satisfy them as

identities in p. Equating the coefficients of the like powers in p, we

generate sets of equations for V~ , i,j = 0,1,2,... The first set of equations

obtained by equating the ia- -independent parts in (50a), (Sob), (50c),

are precisely equations (20), (21), (22), respectively. Hence from the

uniqueness of solutions to (20), (21), (22). We conclude that

V g = v 0
= L , V~~= V 1, V~~ = V 2 (52)

and V thus consists of the leading terms of V.

The second set of equations in matrix form

o = v~ a-1 + V~~K2 
, V~ (0) 0 (53a)

0 = V~~A1 + i,V~ + V~~A2 + 2~~ V~ (53b)

0 = v~~ 1 + ~-(V~~A1 + A1V~~) + v~A2 + A V ~ + 3(v~K2) (53c)

0 = 3(V~K2
) + (V~~A1)5 (53d)

- —--——---— -— —
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ob ta ined by equating the ~ terms in ( SOa) ,  (Sob), (50c), (Sod), respect ive ly ,

involve only the unknown terms V
~x~ 

V~ , V~ and V~ . In (53) the multi-

pl icat ion of an n
1
xn

2
Xn

3 
matr ix by an n

3
Xn
4 

matr ix results in an n
1

X n
2

X n
4

matrix . For convenience we suppress the last dimension of the mXmX l

matrices (V~~K1) and (V~K2) a
nd regard them as mxm matrices. Since K2 is

stable , (53d ) and (53c) can be solved sequentially f or V~ and V~ , respec tively.

The n V~ can be solved from (53b) and its substitution into (53a) results in

the partia l differential equation

o V~~K~ 
- (K~V +2~~ V~ )A

2
1
K
2 , V~ (O) = 0.

In general , in equating the p,
i 

terms we obtain the (i+1)st set

of equa tions involv ing the unknown terms V~~ , V~ , V~ , V~~
1 , .  - - ,V?+2. The

terms V?i-1,V~
,. . ~~~~~ are solved for sequentially and then V~~

1 
is to be

solved from an equation similar to (41).

The main accomp lishment of the nested expansions is that the first

set of equations (20)-(22) can be solved independently for the first three

zero th order terms V~ , V~ , and V~ . Similarly, (53) and the subsequent sets

of equa tion s can be solved independe nt ly for ~~~~~~ . ~~~~~ These equations

are dependent only on x and not on z or 
~
.L . A further simplify ing pr oper ty

is that at the first stage the equations (ll),(22) for V~ and V~ are

decoupled .

The approximation obtained by expand ing V of (47), (51) to the ith

set of equations is stated in the fo l lowing  theorem.

Theorem 3

Suppose that the solutions to the ith set of equations of V exist

and let V1 
be the truncated series of (47),  (51) inc luding a l l  the terms

a - - - - -  - - - ___________________________________________________________



21

up to the ich set. Then the control

u. = - 

~ 
R

1 (B
~
V
X ~~ B V 1 ) (5~~

is near optima l in the sense that V’ satisfies the Hamilton-Jacobi equation

(15) to an 0(~
1
) e r ro r .

Proof: Substituting the terms into (15) and using the first i set of

equations of V , the coefficients ~~ 
~k terms , k<- i , in the resulting

equation vanish , imp lying 0(~?) near-optimality.

Thus Theorem 3 imp lies that U
c 

of (24) is an 0(p) near-optima l

control because it is an 0(p) approximation of u1 
which achieves O(~ ) near-

optimality . In general , retaining only the ~~ terms , k<i , in u., the

resulting control also ~s O(J) near-optima l in the sense of Theorem 3.

Repeat ing the derivation in Section IV , we can show tha t u .

stabilizes the full system (1) with similar stabilizing properties as Uc 
of

(24). We first introduce the x , = z +X~~K2 variables and consider U in

(31) as a tentative Lyapunov function. The ana lysis is more cumbersome

but results similar to Theorems 1 and 2 and Corollary 1 can be established .

VI. Discussion and Examp le

The computationa l advantage of the proposed procedure is that all

the terms of V in (47), (51) are obtained from equations involving the slow

var iable  x onl y. Moreover V~ and V~ are so lved for independen t ly. Expl icit

consideration of the initial boundary layer  is avoided and it is optim a l ly

s tab i l ized by the z var iable feedback. Furthermore using the x ,T va r i ab l e s

an estimate of the domain of stability is eas i ly obtained . Alternativel y ,

~~ 
_

_

_ &

__ __ _ -

- — - - -

- — - - - -

-
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for a stability doma in to enco mpas s a prescr ibed bo unded se t ~~C EC  R
m

a bound for p. can be determined .

Several  aspects of the desi gn procedure and the stability properties

of the resul ting feedba ck sys tem are now i l l u s t r a t e d  by cons ide r ing  the

op timal con trol proble m of the second order sys tem

= xz
(56)

w ith respec t to the per forma nce index

J = ~~(x
4 
4 z

2 
+ ~ u

2
)dt. (57)

Solving the reduced problem we obtain L = V~ 
= x

2 and u = -x
2
.

The op timally controlled reduced system (12) is ~ -x
3 
and its unique

asymptotically stable equilibrium is x 0 .  Note that the linearization

of the red uced sys tem fa ils to provid e any stabil ity information at x O .

Let D be th~ interval 1-1 ,11, that is , L=c = l at x ± 1  by Assumption IV.

The pair (A2 , B2) (-1 ,1) satisfies (3) and we can solve (22) for

V~~4 (~J~
1-1) such that K2~~- -~J~. Then the substitution of Vg .L x

2 
and

into (23) yields the following expressions for (24) and (16)

= _ (~J~x
2
+ (.J~_l)z) (58)

V = x2 +p~J~x
2
z i-p ~ (~

/
~-l)z

2 . (59)

The resul t ing feedback sys tem is

2 (60)
pi -J~x -~/~

‘z. 

- —
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This result is essentiall y nonlinear since the linearization of

(60) at x 0 , z 0  does not prov ide any stabi lity information. Using the

change of var iables T’ z+x
2
, system (60) becomes

2
x = -x +x:

(61)4 ,— 2 ,,
p.r = -2px - (~ 2-2px ) .

Since we req u ire l x i  ~~l, p. is restricted to be less than lI~/~ The

tentat ive Lyapunov func t i on  (31) is

= x
2
+~- (~J

’
~-l)~ 11

2
. (62)

If we require that the initia l conditions of (61) be in lx! < .8, J -r I <P 5 ,

then we must set C to be less than .0695 in order for the ellipse

S(x,T,C) = [x ,1) : Ur x
2
+~
. (~~~ 1)C~

2
~~ l) (63)

to enclose  these in i t ia l conditions . Plots of S in the x ,~ coordinates

and the x,z coordinates for C = .06 are shown in Figure 1. The time

der ivative of U with respect to (61) is

= (g
1 

_ E~ y2) ..L ~2 ~~ ~~2 (64)

where
g1 

= 2x
4
, y 2(l -C (~J~-l)x

2
)x
2 

(65)

7 (65)

~ 
11_ ~~~~y, M - ~J

’
~~-2 p(~/~-l)x

2
.

Since lim y2/g
1 2, Assumption V is satisfied . For all x,1l in the interior

x~0

of S and C .06, U is negative definite for all pe (0,.031 . Hence x 0 , z 0

is asymptotically stable for all Ix l~~.8, z+x21 
~~5 and pe (0,.031.

Furthermore , V satisfies the Hamilton-Jacobi equation (15) with an error

of p .2AJix
2
z2.
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x ,T coordinates 

x ,z coordinates

10-
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-l -5 0 .5 1

x

Figure 1. Plot of S in (63).



25

If  we are on ly interested in the optimality of the reduced problem

and consider the z-part as due to “sys tem paras it ics ,” we can app ly the

reduced control u to (56) as A
2

-l is stable . System (56) c o n t r o l l e d  by

U is
0

= xz

2 (66)
= -x -z.

Transforming z to ~~~ z+x
2
, sys tem (66) becomes

3
X = -x + X :

2 2 (67)
= 24.~x - (l -2px )‘~~.

We use U in (62) as a Lyapunov function for (67) and the time derivative of

U with respect to (67) is

U = -r2 -
~~~~~ 2W~-1)~~~ +l -Cx

2
)
2
1x
4 ~~~~~~~~~~~~~~~~~~~ ~~~~ 

-
~~~~~ 2~~~ +l -Cx

2
)x
2
1

- ~ (~~ -1)(~~-2px
2)T2. (68)

Thus for all x P enclosed in S and e = .06, U is negative definite for all

p€ (0,.02]. Hence x 0 , z 0  of (66) is asymptotically stable for all

ix~ 
< .8, fz-ii~

2
l <5 , p€ (0,.02].

To obtain an 0(p2) approx imation of V in the sense of Theorem 3,

we solve (53) for higher order terms of V~ and obtain

= U -p2x2z (69)

v2 = V+p Li-p.
2~ 2~ 2 (70)

System (56) controlled by u2 becomes

— .0 I - - - - - _ - — - - -
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= xz

= -~
j
~ x

2 
- (~,

/
~~+p2x

2
)z, (71)

or , in the x ,’ z+x
2 va r iables ,

= -~~~~ ÷~~~
(72)

p.~~

which is globally asymptotically stable for all p >0. Furthermore , V
2

- 2 42 2 3
satisfies (15) with an error of p (8x z +2x z ).

VII. Conclusions

A nested powe r series expansion method has been proposed for

solving the optimal control problem of a class of nonlinear singularly

per tu rbed  systems . The terms in the expansion V are obtained from equat ions

involving only the slow variab le x. In addition , Vg and V~ are solved fo r

independent ly .  E x p l i c i t  cons idera tion  of the i n i t i a l  boundary layer is

avoided and it is optimized by the z variable feedback . Sufficient cond i-

tions are obtained such that feedback controls using truncated series

stabilize the nonlinear systems and the stability domain can encompass large

initial conditions of z. These truncated controls can achieve near-

optimality of 0(p), 041.
2
), etc . In particular , an 0(p) near-optimal feed-

back control can be implemented without knowing the value of the small

parameter p . The results apply to essentially nonlinear problems .
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Appendix

Substituting (23) into (20) and rearranging yields

0 = X1 +V0~X2 
-

~~~~ V0 X3V~

where

X 1 
= p - (s’ +2a~ V2)K2 

1
a2 

- (~ 5 ’ +a~ V2)~~
l
B R

l
B~ 

l
( +V2

a
2)

X
2 

= a + BR
1
B~A

1
(~ s+V2

a
2)

X BR ’B ’
3 0 0

= a
1 

- (A
1
-B

1
R

1
B~V2

)K
2
1
a
2

B1 
- (A1

_B
1R

1
B~V2)K~~B2

A2 
= A2 - B2R

1B2V2
0 0 -l _-l

and the superscript 0 in VOx and V~ has been dropped . Let H = I+R B~V2A2 B2
.

Then H ’ = I -R 
1
B~V2A2

1
B2 and H

’ 1RH
1 

R+B~A
1QA

2
1
B
2 

= R .  Thus

B = B H - A  A4B = B H. Hence = B R
1
B ’. Also ,

X~ 
= a0+ B R  [ (R+B A ~Q A B

2
) R B V

2A2
1 +B~A~~~V2]a

2+ ~ BR
1
B~A~~

1
S

= a0 + B0R0 B~A (A~ V2 + ~~A2 B2R B~ V2 + V2A2 - V2 B2R B~ V2 )A
2

+~~ B R
1
B’A ’ 1

s2 o o  2 2

—1
a - B R  S .
0 0 0  0

Furthermore , A~ B2
R

1
B~A~ 

1 
= A~

1
B2
HR 

1
H’B~A~~

’ = A2
1
B2RQ

1
B~A

’ and

- -~~~--- - - _- —~~~~ - --- -

.0 - — • ~~ — 
- - —
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—l — l —l — l _—l
A2 

= A
2 +A2 B2R B~V2

A2

— l —l —l — l —1 —1
= A2 +A2 B2R0 B~(V2 +A QA2 B2R B~V2

)A~

= A2
1 
-A 2

1
B2
R0

1
B~A~~~QA2

1 
-A 2

1
B2R0

1
B~A~~~V2

.

Thus X1 become s

X1 
= p _stA2

l
a2
+S ‘A2

1
B2R

1
B~A~ 

1QA
2
1 

~~ 
s ’A

2
1
B
2
R

1
B~A~~

1
s

+a~ V2
A
2
1
B
2
R

1
B~A~~

1
V
2
a2 - a~ (V2A2

1 
+K

1
V
2)a2

.

But

V2A~
’ +K~ 

1v2 = -V2A2
1 
-A ~~

1
V2 +V2A2

1
B
2R0

1
B~A~ 

1
QA2

1 +A~~
1QA

2
1
B
2
R

1
B~A2

1
V
2

+ 2V2A2 
1
B2R0 

1
B~A~ 

-

= A 
1QA2

1 
-A~ 

1
V2B2R

1
B~V2A2

1 
+ (V

2 
+A~ 

1Q)A
2
1
B
2
R

1
B~A~ ~(V2 +QA2

1
)

+V
2
A
2
1
B
2
RQ

1
B~A~~

1
V
2 

- A
1QA2

1
B2R

1
B~A~~

1QA
2
1
,

and

A~~
1
V2B2R

1
B V 2A2

1 
= 

~~~~~ 
+A 1

Q2
)A
2
1 +A~~

1
V
2
B
2
R

1
B V

2A2
1]B

2
R
1B V

2A2
1
,

that is,

A~~
1
V2B2R

1
B~V2A2

1 
= -(V

2 +A~~
l
Q2

) A B
2
R

l
B~V2

K2

l

= (V
2 

+A~ 
1Q)A

2
1
B
2
R ’B~A~ 

1(QA;
1 +V

2
),

implying X1 
= p0 

- s~R0
1
s0. Hence elimination of V1 from (20) yields the

Hamilton-Jacobi equation (11) of the reduced problem.

.0 - - - - ______________________________
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